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1 Introduction

In the majority of investigations of the dynamics of pendulum systems are be-
ing conducted without taking into account the limitations of excitation source
power, so it is assumed that the power of excitation source considerably ex-
ceeds the power that the vibrating system consumes. Such systems are called
ideal in sense of Sommerfeld–Kononenko [2]. In many cases such idealization
leads to qualitative and quantitative errors in describing dynamical regimes of
pendulum systems [4]–[6].

Therefore, in most practical problems an object ”the oscillating system –
the source of oscillation” should be principally treated as a nonideal in sense
of Sommerfeld–Kononenko dynamical system [2]. In such systems, the oscil-
lation source power is always assumed comparable to the power consumed by
the oscillating system. This requires taking into account interactions between
oscillating loading and the energy source of oscillations.

2 Mathematical model of the system

As it has been established in [4]–[6], the motion equations of the ”pendulum–
electric motor” can be described by the following deterministic dynamical sys-
tem:
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(1)

where phase variables y1y2 describe the pendulum deviation from the vertical
and phase variable y3 is proportional to the rotation speed of the motor shaft.
The system parameters are defined by
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where m - the pendulum mass, l - the reduced pendulum length, ω0 - eigenfre-
quency of the pendulum, a - the length of the electric motor crank, δ - damping
coefficient of the medium resistance force, I - the electric motor moment of in-
ertia, E, N0 - constants of the electric motor static characteristics.

Since the system of equations (1) is nonlinear, the identification and study
of its attractors can only be done through a series of numerical methods and
algorithms. The methodology of such studies is suggested and described in [6],
[7].

3 Maps of dynamic regimes

A very clear picture of the dynamical system behavior can give us a map of
dynamic regimes. It is a diagram on the plane, where two parameters are
plotted on axes and the boundaries of different dynamical regimes areas are
shown. Since the number of parameters in the system (1) is more than two,
the detailed map of dynamic regimes will consist of many sheets.

In fig. 1 several sheets of dynamical regimes maps are shown. Two of four
parameters (C,D,E, F ) of the system (1) were constants and two others varied
within certain limits. The map in fig. 1a was built when C = −0.1, E = −0.59.
The map in fig. 1b was built when F = −0.17, E = −0.59. The last two
maps in fig. 1c-d were built when D = −0.6, F = 0.19 and C = −0.1, F = 0.19
respectively. The dark-grey areas of the maps correspond equilibrium positions
of the system (1), the light-grey – to limit cycles and the black – to chaotic
attractors.

As we can see, in each map there are extensive areas where the system has
chaotic regimes. This means that the deterministic chaos is a typical steady-
state regime of the given system.

It should be emphasized that consideration the problem in ideal formulation,
i.e. neglecting the pendulum influence on electric motor functioning, can lead
to gross errors in describing of the dynamics of system. Indeed, in the ideal
formulation of the problem in the system of equations (1) should be put D = 0,
then the system of equations disintegrates into two subsystems. The first one
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Fig. 1. Maps of dynamic regimes

will consist of the first two equations of (1), and the second one will consist of
the one third equation of the system (1). Therefore, in the ideal formulation of
the problem, the maximum phase space dimension of the obtained equations
will be equal to two. In the spaces of this dimension the existence of chaotic
attractors is theoretically impossible [6], [1].

The obtained maps of dynamical regimes allow us to conduct a quick qual-
itative identification of the type of steady-state regime of the system (1). On
the basis of the constructed maps, more detailed studies of emerging dynamic
regimes can be carried out. Particularly, the transition from regular to chaotic
regimes.

For this purpose, we carry out a vertical (horizontal) section of maps and
build other characteristics of the system. For instance, let us carry out a
vertical section of the map, that is shown in fig. 1b, along the line C = −0.07.
In fig 2a a fragment of phase-parametric characteristic (”bifurcation tree”)
of the system is shown and in fig 2b the dependence of maximal non-zero
Lyapunov’s characteristic exponent of the system from the parameter F is
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depicted. These characteristics correspond to the parameter D change in range
of −0.55 to −0.4. The intervals of the parameter D, in which there are separate
branches of the bifurcation tree ”crown”, correspond to the periodic regimes
of the system steady oscillations. And the intervals in which the ”crown” is
represented by saturated black color, correspond to chaotic regimes. As it
has been established in [4]–[6], this kind of ”bifurcation tree” corresponds to
transitions ”cycle – chaos” according to the Feigenbaum’s scenario from the
right side of the bifurcation parameter changes and to intermittency in the
sense of Pomeau-Manneville from the left side of the bifurcation parameter
changes.

a b

Fig. 2. Phase-parametric characteristic of the system (a), the dependence of maximal
non-zero Lyapunov’s characteristic exponent (b)

4 The universality class determination

Let us consider the behavior of the system when parameters are C = −0.1,
D = −0.5, E = −0.59, and 0.16 ≤ F ≤ 0.27. In fig. 3a the dependence of
maximal non-zero Lyapunov’s characteristic exponent of the system (1) from
the parameter F is depicted. As we can see, there are several intervals of
variation F where the system has positive Lyapunov’s characteristic exponent.
The attractor of the system in these intervals is a chaotic attractor. In the
region of existence of chaotic attractors, in the left side of the fig. 3a, we
can notice several dips of the Lyapunov’s exponent graph to negative values.
Small intervals of the parameter F in which there are such dips form the so-
called windows of periodicity in chaos. In these windows attractors of the the
systems are limit cycles. Also in the right side of the fig. 3a we can clearly
see the approaches of maximal Lyapunov’s exponent to the zero line, which
correspond to the points of bifurcation of period-doubling.

In fig. 3b the phase-parametric characteristic of the system is shown. A
close examination of this figure shows as the bifurcation points of regular
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Fig. 3. The dependence of maximal non-zero Lyapunov’s characteristic exponent from
F (a), phase-parametric characteristic of the system (b).

regimes as well as the bifurcation points, at passing of which, regime changes
from regular periodic to chaotic. So in this case, at decreasing the parameter
F , transition to chaos happens through the infinite cascade of period-doubling
bifurcations according to the Feigenbaum’s scenario.

In order to determine the class of universality for the system (1), we need
to calculate the Feigenbaum’s constant, which is determined by the formula:

δ = lim
n→∞

δn = lim
n→∞

Fn − Fn−1

Fn+1 − Fn
, (3)

where Fn – value of the bifurcation parameter at the n-th point of period-
doubling bifurcation.

Bifurcation values of Fn correspond to the approaches of maximal Lya-
punov’s exponent to the zero line (fig. 3a) or to the cleavage points of separate
branches of ”bifurcation tree” in fig. 3b. We should mention, that for a correct
calculation of the Feigenbaum’s constant the bifurcation values of Fn must be
determined with a sufficiently high accuracy. Therefore using fig. 3 we ini-
tially roughly define the interval of the parameter F variation that contains
the first bifurcation point. As can be seen from fig. 3, 0.26 < F1 < 0.27. Then
we build the dependence of maximal Lyapunov’s characteristic exponent from
F and phase-parametric characteristic on the interval (0.26, 0.27) and specify
the value of the first bifurcation point. Repeating the procedure of decreasing
the interval of the parameter F variation and constructing the dependence of
maximal Lyapunov’s characteristic exponent from the parameter F and phase-
parametric characteristic on the smaller scale we can obtain the value F1 with
a sufficiently high accuracy. In order to verify the correctness of the bifurca-
tion point determination we build phase portraits of the system passing the
first point of bifurcation and make sure, that the structure of phase portraits
changes from single-turn cycle to two-turn cycle. Similar procedures are used
for defining the following period doubling bifurcation points.
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In our case, the values of bifurcation points were determined with an accu-
racy to ε < 10−7. At F = 0.265967 the attractor of our system is single-turn
limit cycle and at F = 0.265966 this cycle loses its stability and in the system
arises two-turn limit cycle. We take the average of this two values as the first
point of period-doubling bifurcation, so that we assume that F1 = 0.2659665.
At F = 0.211192 the system has two-turn cycle and at F2 = 0.2111915 the
second period-doubling bifurcation takes place and four-turn cycle arises in the
system as a result of it. This cycle loses its stability at F3 = 0.1971565 and
8-turn limit cycle arises in the system. The fourth and fifth period-doubling
bifurcations occur respectively at F4 = 0.1942145 and F5 = 0.1935835. As a
result 16- and 32-turn cycles appear in the system. At F6 = 0.1934483 32-turn
limit cycle loses its stability and 64-turn cycle arises in the system. This infi-
nite cascade of period-doubling bifurcations comes to end by origin of a chaotic
attractor.

Substituting the obtained values into the formula (3) we get:

δ2 = 3.90274, δ3 = 4.77056, δ4 = 4.66244, δ5 = 4.66720

We take the value δ5 = 4.66720 as an approximate value of the Feigenbaum’s
constant.

Let us show that the value of the Feigenbaum’s constant remains virtually
unchanged at different set of the parameters of the system (1). Let the pa-
rameters of the system are C = −0.1, D = −0.5, F = 0.14. As bifurcation
parameter we choose E that varies −0.77 ≤ E ≤ −0.6. In fig. 4a,b the de-
pendence of maximal non-zero Lyapunov’s characteristic exponent from E and
phase-parametric characteristic of the system are shown respectively.

a b

Fig. 4. The dependence of maximal non-zero Lyapunov’s characteristic exponent from
E (a), phase-parametric characteristic of the system (b).

The qualitative similarity of fig. 3a-b with the respective fig. 4a-b should
be noted . As in the previous case, there are several intervals of the parame-
ter change (in this case it is E) in which the system has positive Lyapunov’s
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characteristic exponent (fig. 4a). Therefore in these intervals the system has
chaotic attractors. Again in fig. 4a we can clearly see the approaches of maxi-
mal Lyapunov’s exponent to the zero line. The form of ”bifurcation tree” (fig.
4b) clearly illustrates the Feigenbaum’s scenario of transition to chaos. How-
ever, as opposed to the previous case, the infinite cascade of period-doubling
bifurcations takes place at increasing of the bifurcation parameter.

Let us find the values of the parameter E at which period-doubling bifur-
cations are happening. The methodology of obtaining these values is similar
to that which was used in the previous case for finding bifurcation values of
F . At E = −0.76763 the attractor of our system is single-turn limit cycle,
which loses its stability at E1 = −0.767625 and in the system arises two-turn
limit cycle. At E = −0.64983 the system still has two-turn limit cycle and
at E2 = −0.649825 the second period-doubling bifurcation takes place and
four-turn cycle arises in the system as a result of it.

This cycle loses its stability at E3 = −0.632405 and 8-turn limit cycle
arises in the system. The fourth and fifth period-doubling bifurcations occur
respectively at E4 = −0.629315 and E5 = −0.628666. As a result 16- and
32-turn cycles appear in the system. At E6 = −0.628527 32-turn limit cycle
loses its stability and 64-turn cycle arises in the system. This infinite cascade
of period-doubling bifurcations comes to end by origin of a chaotic attractor at
E = −0.62848. Using the formula (3) and respectively substituting the values
Ei instead of Fi into it, we get the following values:

δ2 = 6.76234, δ3 = 5.63754, δ4 = 4.76117, δ5 = 4.66906.

We take the value δ5 = 4.66906 as an approximate value of the Feigenbaum’s
constant.

The obtained values quite accurately match with the Feigenbaum’s con-
stant, which approximately equals 4.6692. This means that we can state that
the system (1) apply to class of universality with the classical Feigenbaum’s
constant.

5 Analytical approximation of Poincare map

In the previous studies of the ”pendulum–electric motor” [4]–[6] it has been
established that chaotic attractors that exist in this system, generally, have
”quasi ribbon” type of Poincare maps.

This means that the original system of differential equations can be approx-
imately reduced to one of the discrete maps [3], [1]. The study of the dynamics
of this discrete map will be much easier than investigation the dynamics of the
original system.

Let the system (1) has following values of parameters C = −0.1, D = −0.5,
E = −0.59, F = 0.19. At these values of the parameters in the system there is
a chaotic attractor. Its phase portrait is depicted in fig. 5.

In fig. 6 the Poincare maps of this chaotic attractor are shown. As can
be seen from this figure, the Poincare maps on both phase variables have a
structure that is close to a line on the plane. Both maps represent some chaotic
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Fig. 5. Phase portrait of the chaotic attractor at C = −0.1, D = −0.5, E = −0.59,
F = 0.19

set of points. Quantity of these points increases with increasing the time of
numerical integration. It is impossible to foresee the order of points placement
along ”the ribbons” that form the map. However, it is known beforehand that
they can only be placed along these ribbons.

a b

Fig. 6. The Poincare maps of the chaotic attractor.

Let us consider the Poincare map that is shown in fig. 6a. The graph of
this map is defined by a set of discrete coordinate values

(y1,n+1, y1,n), n = 1, 2, ..., N, (4)

where N – is a number of discrete points on which the Poincare map is con-
structed. Let us set the problem of finding the polynomial whose graph as close
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as possible to the points of the Poincare map. For this purpose, the LS method
has been used. For set of points (4) we find a m-order polynomial:

f (m)(y1) = p1y
m
1 + p2y

m−1
1 + ..pmy1 + pm+1, (5)

the coefficients of which are solution of the minimization problem

min
p1,p2,...,pm+1

N∑
i=1

(
f (m)(y1,i) − y1,i+1

)2
. (6)

The approximation errors have been estimated using the mean-squared error,

i.e. ε(m) =

√√√√ min
p1,p2,...,pm+1

N∑
i=1

(
f (m)(y1,i) − y1,i+1

)2
. Applying this method,

the following approximations have been obtained:

f (2)(y1) = −0.8377y21 − 3.8947y1 − 5.7267, ε(2) = 0.0506;

f (3)(y1) = −0.0067y31 − 0.8881y21 − 4.0199y1 − 5.8292, ε(3) = 0.0505;

f (4)(y1) = −0.5365y41 − 5.3596y31 − 20.778y21 − 36.6289y1 − 25.7282,

ε(4) = 0.0096.

Then, the only approximation errors are shown:

ε(5) = 0.0087, ε(6) = 0.0082, ε(7) = 0.0081, ε(8) = 0.0081.

It is seen that with the increasing the polynomial order, starting from the
order m = 4, the approximation accuracy increases insignificantly.

Fig. 7. The Poincare map and its second-order polynomial approximation
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The fig. 7 shows an enlarged fragment of the constructed polynomial
f (2)(y1) (continuous line in the figure) that is overlaid on the Poincare map.
As can be seen from this figure, these two graphs are close enough to each
other. Therefore, this gives us basis to consider the principal possibility to
study the continuous system ”pendulum–electric motor” (1) using discrete map
y1,n+1 = f (2)(y1,n). More accurate results will be obtained when the maps
y1,n+1 = f (m)(y1,n), m = 4 ÷ 8 are used.

6 Conclusion

At the study of the dynamical system ”pendulum–electric motor”, the atlas of
maps of dynamical regimes has been constructed. It has been established that
deterministic chaos is a typical steady-state regime of the given system. The
Feigenbaum’s constant of system ”pendulum–electric motor” is obtained. The
class of universality of the given system is defined. The analytical polynomial
approximations of the Poincare map have been found.
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