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Abstract 
Some of non-ideal dynamic systems are considered. It is discovered and described the complicated transition 
scenarios from regular to chaotic regimes and transitions between different types of chaotic regimes. 
Described the transition to chaos, which begins by the Feigenbaum scenario, and ends by intermittency. Also 
discusses the scenario of intermittency with several laminar phases and one turbulent phase. It is discovered 
and described transitions "hyperchaotic attractor of one type – hyperchaotic attractor of another type," which 
are realized according to the scenario of a generalized intermittency, but only with two rough-laminar phases.  
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Introduction 

In spite of the infinite variety of the dynamic systems, it is possible to divide all scenarios of 
transitions to deterministic chaos into three basic groups. To the first group belongs Feigenbaum 
scenario of transition to chaos through an infinite cascade of period-doubling bifurcations of limit 
cycles [1, 2]. To the second group of scenarios belong transitions to chaos through an intermittency by 
Pomeau-Manneville of various types [3]. At last, to the third group of scenarios belong transitions to 
chaos through destruction of quasi-periodic attractors (invariant toruses) [4]. However, the description 
of the scenarios of transition to chaos in dynamical systems is found in initial stages of the study. 
Many questions about the relationship between the different scenarios of transition to chaos remain 
unexplored [4]. 

 
1. Statement of the Problem 

 All oscillating dynamic systems consist of two main parts, a source of oscillations excitation 
and oscillating loads. If the power of the excitation source is comparable to the power consumed by 
the oscillating load, then such a system is called as non-ideal by Sommerfeld – Kononenko [5, 6]. If 
the power of the excitation source considerably exceeds the power consumption of the oscillating 
load, then such a system is called as ideal by Sommerfeld – Kononenko.  
 Objectives of the global energy saving, forced to the maximum to minimize the power of 
various sources of oscillations excitation. Therefore, the vast majority, the real modern oscillating 
systems are nonideal. In mathematical modelling of nonideal systems is necessary to consider the 
influence of oscillating loads on the functioning of the source of oscillations excitation. Neglecting the 
influence of loads on excitation source may lead to serious errors in the description of the dynamic 
behaviour of the system. In particularly, it may be completely lost the information about real existing 
deterministic chaotic regimes [5]. 
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Consider the following nonlinear system of differential equations:  
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Here 1 1 2 2, , , ,p q p q  - phase coordinates;  - time: 1 1 1 3, , , , ,A B N N    - some parameters. As was 
established in works [5,  7] the system of equations (1) is used to describe the fluid oscillations in 
cylindrical tanks, for the study of pendulum systems with a oscillating suspension point, for the 
simulation of oscillations of thin shells and a number other topical problems of nonlinear dynamics. 
 The parameters 1 1 1 3, , , , ,A B N N   have one or another physical or geometrical meaning 
depending on the considered application task. Phase variables 1 1 2 2, , ,p q p q  are the generalized 
coordinates of the oscillating subsystem and phase variable   describes the operation of the source of 
excitation of oscillations. 
 System of equations (1) is a nonlinear deterministic dynamical system with a five-dimensional 
phase space. In papers [5, 8, 9, 10] it is established that there are several types of regular and chaotic 
attractors of this system and show that the transition to deterministic chaos can be carried out on all 
three groups of scenarios. The aim of this work is the identification and description of new scenarios 
of transition to deterministic chaos in dynamical systems of the form (1).  We shall investigate, as the 
scenarios of transition from regular attractors to chaotic ones, as well the scenarios of transitions 
between different types of chaotic attractors. 
 

2. Identification and description of different scenarios of transition to chaos 

 Since the system of equations (1) is a nonlinear system of ordinary differential equations of the 
fifth order, the construction of attractors of such a system is only possible through the application of 
different numerical methods.  Large series computer simulation of the system of equations (1) was 
carried out in the space of the parameters ( 1 1 3 1, , , , ,A B N N  ) of this system. The methodology of 
such a computer simulation is described in detail in the works [5, 8]. As a result of such a computer 
simulation was able to identify and describe some of the new scenarios of transition to chaos. 

Let the parameters of the system (1) takes the value: 1,12; 1,531;A B   1 0,5;  1 1N   ; 
1 0,3.    As bifurcation parameter we choose the parameter 3N .  

When 3N  changing in limits 30,6526 0,6302N     in system exists two single-stroke stable 
limit cycles. The projections of the phase portraits of such limit cycles, built at 3 0,645N    are 
shown in Fig. 1a, b. Their projections are symmetrical relative to the axis of abscissa 2 0.p   
Signatures of the spectrum of the Lyapunov characteristic exponents (LCE) of such cycles are of the 
form 0, , , ,     , which is typical for periodic regimes [4]. At increasing the value of the 
parameter 3N , there are simultaneous period doubling of the existing limit cycles. The projections of 
phase portraits arising 2-stroke cycles, built at 3 0,6368N    are shown in Fig. 1c, d.  Their 
projections are also symmetrical relative to the axis of abscissa. With further increasing the value of 
the parameter 3N  going infinite cascade of period-doubling of the existing limit cycles. This cascade 
ends with the emergence of a chaotic attractor (Fig. 1e). The projection of this attractor consists of 
two symmetrical about a horizontal axis parts, and occupies the region of phase space in which 
symmetrical limit cycles exist. 

 



Alexandr Yu. Shvets, Vasilyi Sirenko  

 
 

 
 
 

а б 
 
 
 
 
 
 
 
 

                   a                                                               b                                                            c 
 
 
 
 
                                                                  
 
 

в г 
 
 
 
 

                       d E 
Figure 1. Projections of phase portraits of limit cycles at 3 0,645N   (a, b), 3 0,6368N   (c, d) and 

chaotic attractor at 3 0,6295N   (e) 
 

The signature of the LCE spectrum of chaotic attractor has the form , 0, , ,    .  In this 
case, unlike the regular attractors, chaotic attractor has several important distinguishing features. 
Maximal Lyapunov exponent of the chaotic attractor is positive, all the trajectories of the attractor 
unstable by Lyapunov and moment of time of the Poincaré returns of trajectories are unpredictable. 
The motion of the representative point of the trajectory on a chaotic attractor can be divided into two 
phases. In a first phase, a trajectory commits chaotic wandering along the top or bottom turns of the 
attractor. At unpredictable times trajectory moves in the opposite symmetric part of the attractor, and 
there continue a chaotic wandering in this part of chaotic attractor. This process is repeated an 
infinite number of times. Thus, in this case, the transition to chaos united the peculiarities of 
Feigenbaum scenario (infinite cascade of period doubling bifurcations of limit cycles), and the 
peculiarities of Pomeau-Manneville scenario (unpredictable intermittency between the upper and 
lower parts of chaotic attractor). 

One considers the features of the transition to deterministic chaos at the exiting of the 
parameter 3N  out of the      boundaries of the interval 31, 2105 1,1829.N     At 

3N ( 1, 2105; 1,1829)    attractors of the system (1) will be symmetrical, relative to the axis of 
abscissa, limit cycles. The projections of the phase portraits of a typical pair of limit cycles, 
constructed for 3 1,183,N    are shown in Fig. 2a, b. These cycles have more complex structure 
than previously considered in Fig. 1a, b.  

If the increasing (or decreasing) of parameter 3N  leads to exit the value of this parameter out 
of the boundaries of the interval 31, 2105 1,1829N    both limit cycles are shown in Fig. 2a, b are 
vanishing. Full-blown chaotic attractor arises in the system. Typical projection of the phase portrait 
of the chaotic attractor of this form is shown in Fig.2c. In Fig. 2d is shown the distribution of the 
invariant measure by the phase portrait of the chaotic attractor. Heavily drawn area in Fig. 2d by the 
form reminiscent of the "splice" symmetric limit cycles. The distribution of the invariant measure by 
the phase portrait of the chaotic attractor clarifies the mechanism of its occurrence. The emergence 
of chaos in this case has the characteristic features of intermittency. Typical motion of trajectories by 
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the attractor consists three phases, two laminar and turbulent. In each laminar phase the trajectory 
commits a quasiperiodic motion in a small neighborhood of "upper" or "lower" of vanishing limit 
cycles. At unpredictable moments of time a turbulent burst occurs and the trajectory goes to remote 
regions of phase space. Turbulent phase of motion correspond paler areas of distribution of the 
invariant measure in Fig. 2d. Process of motion of trajectory by attractor consists the following 
phases: "one of the laminar phases – turbulent phase - one of the laminar phases". This process 
repeated endlessly. Moments of "burst" of the trajectory in turbulent phase and the "switches" 
between the two laminar phases are unpredictable and represent a chaotic sequence of moments of 
times. In this case, the transition to chaos reminiscent of the classic scenario intermittency of 
Pomeau-Manneville. However, in this case, the transition to deterministic chaos consists not one, but 
two laminar phases. 
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Figure 2. Projections of phase portraits of  limit cycles at 183,13 N   (a, b), the projection of the phase 

portrait (c) and and the distribution of the invariant measure (d) of the chaotic attractor at 3 1,182N    
 
At computer modeling and numerical analysis of the existing system of dynamic regimes, it 

was found that when 30,3916 0,3893N     in system exist symmetric stable limit cycles (Fig. 3a, 
b). At increasing  of parameter 3N , namely when 3 0,3892N   , the simultaneous period doubling 
bifurcation of existing cycles take place (Fig. 3c, d). Further increase   value of the parameter 

3N generates an infinite cascade of period doubling of symmetric cycles, which ends the appearance 
of symmetric chaotic attractors at (Fig. 3e, g). Arising of each of the symmetric chaotic attractors 
occurs by Feigenbaum scenario. It is worth noting that the obtained chaotic attractors (Fig. 3d, e) are 
separate and have different basins of attraction. In this case there is no phenomenon of "splice" 
chaotic attractors, which was observed in the event of chaotic attractors in Fig. 1e and Fig. 2c. 
          Let us analyze the scenario of transition to chaos at decreasing 3N  and exit it through the left 
border of interval 30,3916 0,3873.N     As mentioned above, for values of the parameter 

30,3916 0,3893N    in the system exist stable symmetric limit cycles (Fig. 3a, b) . At 

3 0,39161N   the symmetric limit cycles disappear and in system arise two symmetric chaotic 
attractors (Fig. 3e, f). Transition from regular regime to chaotic one for both symmetric chaotic 
attractors occur by classical scenario of intermittency by Pomeau – Manneville. This fact clearly 
illustrated the distrubution of invariant measure by the phase portrait of the chaotic attractors (Fig. 3g, 
h). Heavily drawn areas in these figures which are located in a neighbourhood of disappearing 
symmetrical limit cycles, correspond to laminar phase of an intermittency.  
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Figure 3. Projections of phase portraits of limit cycles at 3 0,39N   (a, b), 3 0,3892N    (c, d), 
and chaotic attractors at 3 0,3855N    (e, f), 3 0,397N   (k); distributions of invariant measures of chaotic 

attractors at 3 0,39161N    (g, h), 3 0,397N   (l) 
 



Alexandr Yu. Shvets, Vasilyi Sirenko  

 
 

 
In this phase trajectories of chaotic attractors carry out quasi-periodic motions in a small 

neighbourhood of disappearing limit cycles. More pale parts of distributions (Fig. 3g, h) correspond to 
a turbulent phase of intermittency. Arising of symmetrical chaotic attractors exists in small interval of 
a changing of the parameter 3N .  

At further decrease of 3N  at 3 0,397N   in system occurs the bifurcation «chaos - chaos». 
The symmetric chaotic attractors (fig 3e, f) are disappeared after transiting of a point of a bifurcation. 
In the system (1) arise the chaotic attractor of other type with more complicated structure that shown 
in Fig 3k. The chaotic attractor of such type represents "splice" of disappearing symmetrical chaotic 
attractors (fig 3e, f). Its structure is similar to the chaotic attractors considered above (Fig. 1e, Fig. 2c). 
Transition to chaos in this case happens absolutely under other scenario which considerably differs 
from the previous scenarios. 

The distribution of invariant measure for complicated chaotic attractor is shown in Fig. 3l. The 
two more dark symmetrical areas of this distribution have the geometrical form similar to 
corresponding geometrical form symmetric chaotic attractors from Fig. 3e, f. Analysis the dynamics 
of process shown in fig. 3l allows to state that transition to chaos here happens under the scenario of 
the generalised intermittency which is described for the first time in  [5, 8]. Moving of a typical 
trajectory in attractor consists of three phases. Two of them are termed coarse-grained laminar [5, 8, 
9]. In these phases trajectory carry out chaotic motions in one of the dark areas of Fig. 3l, where were 
located the disappeared chaotic attractors of the previous type. In the third phase - turbulent, attractor 
trajectories leave these areas and move to remote areas of a phase space. The more pale parts in Fig. 
3l correspond to turbulent phase. After that the trajectories return to areas of coarse-grained laminar 
phases. Transition of a trajectory from one of coarse-grained laminar phases to turbulent phase is 
unpredictable in regard to a time and repeats the infinite number of times. Also are possible 
unpredictable direct transitions from one of coarse-grained laminar phase to other coarse-grained 
laminar phase. It is necessary to notice that here, unlike described in [5, 8, 9], generalised 
intermittency consist of two coarse-grained laminar phases. 

At last we will describe scenarios of transitions «regular regime - chaos» and «chaos - other 
chaos» at following values of parameters of system (1): 

1,12; 1,531;A B   3 1;N   1 4,125;  .11 N   As bifurcation parameter we will choose 
parameter 1 . Computer simulation of the system (1) revealed that at values 10,0254 < 0,0102     
in system exists a single-stroke stable limit cycle. At 1 = 0,0254   existing limit cycle loses stability 
and the system, as a result of  bifurcation Neimark, quasi-periodic attractor arises with the signature 
spectrum LCE 0, 0, , ,    . Presence in spectrum ЛХП of two zero  exponents testifies about 
quasiperiodicity of attractor [4]. In fig. 4b is shown the  projection of a phase portrait of such 
quasiperiodic attractor built at 1 = 0,03.  Trajectories of   quasiperiodic attractor everywhere dense 
coat toroidal-shaped surface of attractor and are always returned in arbitrary small neighbourhood of 
attractor with some almost period.  

At the further decrease of value of parameter, namely at 1 = 0,0352  there occurs a 
destruction of torus. Trajectory of system  carry out finite number of  turnovers in torus and becomes 
closed, thus in system arise a resonance limit cycle in torus (Fig. 4c) [4]. At 1 = 0,03825  a 
resonance limit cycle is disappear and in the system (1) arises a chaotic attractor. The projection of the 
phase portrait of the chaotic attractor of such type built at 1 = 0,0382    is shown in Fig. 4d. In this 
case the scenario of  transition to chaos through destroy quasiperiodic regimes [4] is realised.  

At the value of parameter 1 = 0,0388   bifurcation "chaos-hyperchaos"  takes place in 
system (1). As result of this bifurcation arise the hyperchaotic attractor (Fig. 4e)  with the signature of 
spectrum  LCE <+, +, 0, -, ->. Phase portrait of an originating hyperchaotic attractor is similar to  
phase portrait of adisappearing chaotic attractor.  However hyperchaotic attractor has two positive 
Lyapunov's exponents, therefore close phase trajectories of a hyperchaotic attractor diverge in two 
directions of a phase space. While close phase trajectories of a chaotic attractor diverge only in one 
direction of a phase space.  
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Figure 4.  Projections of phase portraits of limit cycles at 1 = 0,025  (a), 1 = 0,0352   (c); a 

quasiperiodic attractor 1 = 0,03  (b); a chaotic attractor at 1 = 0,0382   (d); "small" 1 = 0,0388   (e) and 
"large" 1 = 0,0402  (f, g, h) hyperchaotic attractors. 

 
Extremely interesting bifurcation occurs in the system at 1 = 0,0402  . Existing at 

1 0,0402   hyperchaotic attractor disappears and  in the system  appears hyperchaotic attractor of 
an entirely different type. The different projections of the phase portrait of the hyperchaotic attractor 
of this type, built at 1 = 0,0402   , are shown in Fig. 4f, g . This attractor is localized in a much 
larger volume of phase space than the attractor that shown in Fig. 4e. In Fig. 4g is shown an enlarged 
fragment  of the central part of  Fig. 4f. Therefore, the attractor which shown in Fig. 4e, is called 
called "small", and in Fig. 4f, g is called "big". In [5, 8, 9] has been described a scenario of 
generalized intermittency in transitions "chaos - chaos." A careful study of Figs. 4f, g, h shows that in 
this case is realized scenario of generalized intermittency for transition " hyperchaos - hyperchaos." 
Coarse-grained laminar phase of such intermittency are motion trajectories of the "big" hyperchaotic 
attractor in the neighborhood of disappeared "small" hyperchaotic attractor. Accordingly, the 
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turbulent phase of generalized  intermittency is the departure of  trajectories in remote areas of phase 
space. It should be noted, that the realization of the scenario of  generalized  intermittency for 
transition  “ hyperchaos - hyperchaos" for the system (1) is detected for the first time.    

 
Conclusions 

Thus in the work it is identified and described the new complicated scenarios of transition to 
deterministic chaos in some, important for applications, nonideal dynamical system. In further 
research it is planned a detection of such new scenarios for other types of dynamical systems. Also a 
great interest calls the problem of finding the boundaries of the basins of attraction of considered 
regular and chaotic attractors. 
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