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Abstract 

Oscillations of fluid free surface in a rigid tank raised by an electromotor of limited power-supply are 
considered. At examination of steady-stated chaotic regimes of oscillations of this deterministic system the 
new scenario of transition to chaotic motions is established and described. The described scenario is 
generalization of the known scenario of transition to chaos through intermittency in the sense of Pomeau--
Manneville. 
 

The problem of scenario disclosure of transition from one type steady-stated regimes to others, in 
particular, from the regular regimes to chaotic is one of the most interesting in theory of dynamic systems. To 
the present time enormous number of types of the strange attractors in dynamic systems of the most different 
nature are revealed and described. However, the number of known scenarios of transition between steady-
stated regimes of different types remains rather small. Therefore, detection of new scenarios of transition to 
chaos is an interesting and actual scientific problem of nonlinear dynamics. 

To the present time the three basic types of scenarios of transitions from the regular regimes to 
chaotic  in the theory of dynamical systems are described, namely: (i) transition to chaos through the infinite 
cascade of bifurcations of period doubling of limit cycles (Feigenbaum scenario),  (ii) transition to chaos 
through an intermittency in the sense of  Pomeau - Manneville and  (iii) transition to chaos through 
destruction of quasiperiodic attractors [1].   
  Let's consider a dynamical system which mathematical model in the following form: 
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The system of equations (1) for the first time has been obtained in works [2, 3] and describes oscillations of a 
fluid free surface in a rigid cylindrical tank raised by the electromotor of a limited power-supply. Here phase 
coordinates  and  - coefficients of amplitude expansions of fluid  free surface oscillations of the 
first and second dominant modes; phase coordinate

11,qp 22 ,qp
β  - the detuning of the eigenfrequency of the dominant 

modes and a velocity of the shaft  rotation of the electromotor; 1α - reduced coefficient of a viscous damping 
force; 1μ - coefficient of proportionality of the vibrational moment; - angle of an inclination of the static 
characteristic of the electromotor [4]. Parameters

1N
A , B are the constants depending on radius of a tank and 

height of filled fluid in it [5]. Value  is determined by the formula [3]: 3N
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here R  is the radius of a tank, 11ω  - the eigenfrequency of the fluid free surface oscillation of the dominant 
modes, is the  length of a crank,  is the constant component of the electromotor static characteristic.                       a 0N

The considered system is the deterministic dynamical system with limited excitation. Existence of 
chaotic regimes at limited excitation of a tank for the first time has been proved in the work [2]. However, in 
this work the proof of existence of such regimes is carried out only for a special case of planar oscillations of 
the fluid free surface. Occurrence of chaotic regimes in more general case of spatial oscillations of the free 
surface is established in the works [3, 6]. 

The system of equations (1) is essentially nonlinear one, therefore the determination of its exact 
solutions as analytical formulas in generally case is impossible. For determination of solutions of the system 
(1) numerical methods and algorithms were used. In work [6] the procedure of such numerical calculations is 
designed and in details described. 
 Let's assume that parameters of a system (1) are: 
                       ;112.1=A ;531.1=B ;1.01 −=α  ;5.01 =μ  .1.03 −=N                                  (3) 
At carrying-out of numerical calculations initial conditions were varied in a neighborhood of an origin of 
coordinates in the phase space of system of equations (1). As the carried out examinations have shown there 
are stable equilibrium states at 05.01.0 1 −<<− N  in a system.  At these states the coordinates have values: 

      ;1 constp = ;1 constq = ;const=β ;02 =p .02 =q  
Thus, all stable equilibrium states have zero coordinates for the second dominant mode in a neighborhood of 
an origin of coordinates in the phase space at 05.01.0 1 −<<− N . At 1.01 −=N  this equilibrium state loses 
its stability and in the system (1) a peculiar stable limit cycle with a zero second dominant mode arises as a 
result of the Andronov – Hopf bifurcation. The limit cycle has the following form: 

);(11 τfp =  );(21 τfq =  );(3 τβ f=  ;02 =p  ,       02 =q
where )(1 τf , )(2 τf  and )(3 τf  are some periodic functions of τ . 

At the value  a cascade of period doubling bifurcations of limit cycles starts in a 
system. This infinite cascade of period doubling bifurcations is completed by an origin of a chaotic attractor 
at . In fig. 1.a-b phase portrait projections of chaotic attractor constructed at the value 

 and its of Poincare section (by a plane

10153.01 −=N

101632.01 −=N
10164.01 −=N 55.1−=β ) are shown, accordingly. The chaotic 

attractor has spiral structure, and its section of Poincare is quasiribbon chaotic point sets. Transition to chaos 
happens by Feigenbaum scenario [7]. We want to stress out the very interesting feature of the chaotic 
attractor when all bifurcations of a cascade of doubling of period of limit cycles and chaotic attractor have the 
zero second dominant mode of oscillations ( 022 == qp ). Such attractors we name as single-mode one. 
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                                                  a                                                                                   b 
Fig.1. Projections of phase portrait (a) and of Poincare section (b) of chaotic attractor at 10164.01 −=N . 
 

At  the single-mode attractor disappears and a chaotic attractor of completely other 
type arises in the system. In fig. 2a-c different projections of the chaotic attractor which arises in the system 
at  are given. First of all it differs from the single-mode attractor by  excitation of 
oscillations of the second dominant mode.  Secondly, amplitudes of chaotic oscillations of the first dominant 
mode increase. Due to this the phase space volume, in which trajectories of the arisen chaotic attractor are  
localized, increases. So, in fig. 2а it is possible to see the small densely blacked out area in the neighborhood 
of the point (0,0). This blacked out area approximately corresponds to area of localization in the phase space 
of the missed single-mode attractor. 

10165.01 −=N

10165.01 −=N

In fig. 2c the enlarged fragment of the chaotic attractor projection in the neighborhood of the point 
(0,0) is given. The study of this fragment allows to detect a noticeable similarity with the corresponding 
projection of the single-mode attractor (fig.1а). It makes clear that the mechanism of origin of the "double-
mode" chaotic attractor is a result of an intermittency between the missed chaotic single-mode attractor and a 
saddle limit cycle existing on the neighborhood of localization of the single-mode attractor in the phase 
space. At  the single-mode attractor and the saddle cycle disappear and a new chaotic 
attractor arises in the system (1), motion along trajectories of which consist of three phases: laminar, 
turbulent and one more. The last one we name as coarse grained laminar phase. Motion which is close to 
periodic motion in the neighborhood of the missed limit cycle (see densely retraced trajectories at the left area 
in fig. 2a) corresponds to the laminar phase. At unpredictable beforehand moment of time turbulent splash 
happens and trajectories go away to the area of the missed single-mode chaotic attractor (densely blacked out 
area in the neighborhood of the point (0, 0) in fig. 2c). Then trajectories make chaotic wanderings along coils 
of the missed single-mode chaotic attractor during sufficiently long time. We named this phase of motions as 
coarse grained laminar as an analogy with the terminology used in the statistical physics [8]. Further, at 
unpredictable moment of time, there is a new turbulent splash and trajectories  return to the area of the missed 
limit cycle. The above described process iterates an infinite number of times. Thus, the intermittency distinct 
from the Pomeau and Manneville classical types [9, 10] takes place.  

10165.01 −=N

In fig. 2d the projection of Poincare section (by a plane 55.1−=β ) of the double-mode chaotic 
attractor at  is given. As is apparent from figure the Poincare section loses the ribbon 
structure which existed in the section of the single-mode attractor and looks as some developed chaotic point 
set. However, the close investigation of fig. 2d allows to find, that the constituent of Poincare section of  the 

10165.01 −=N



double-mode chaotic attractor is the ribbon of the missed single-mode attractor. So, transition to chaos 
happens by the scenario which is generalization Pomeau - Manneville known scenarios [9, 10].  
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Fig.2. Projections of phase portrait (a-c) and of Poincare section (d) of chaotic attractor at 10165.01 −=N . 
 

Let's consider now bifurcations which happen in the system (1) when the static characteristic of the 
electromotor is changing by the value of . We shall suggest, that3N 11 −=N , and values A , B , 1α  and 1μ   
remain the same, as in (3). We shall study some features of transition from the regular regimes to chaotic at 
changing of the  value. So at =-0.38 there is a stable limit cycle in the system. At decreasing of   
values infinite cascade of period doubling bifurcations begins. This cascade brings to origination of a chaotic 
attractor at . The arisen chaotic attractor exists in very small interval of  changing and 
already at is replaced by a chaotic attractor of other type as a result of an intermittency. The 

3N 3N 3N

395.03 −≈N 3N
39504.03 −≈N



given situation reminds one which is considered earlier at study of origin of chaos at  changing of the 
parameter . However, in the latter case, one essential difference is present. Both limit cycles and a chaotic 
attractor originating by Feigenbaum scenario are not the single-mode ones. They have oscillations of both 
dominant modes. 
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Fig.3. Projections of phase portraits of chaotic attractor at 39503.03 −=N (a, c); at (b, d).  39504.03 −=N

 
 In fig. 3a-b projections of phase portraits of chaotic attractors constructed, accordingly, at 

and  are given. The chaotic attractor presented in fig. 3b differs from the 
chaotic attractor presented in fig. 3а due to noticeable increasing of vibration amplitudes of both dominant 
modes. This gives essential increasing of the phase space volume in which the arisen attractor is localized. In 
fig. 3c-d these projections at large scale are presented. As it is well visible from these figures, the fragment of 
the projection of the chaotic attractor at 

39503.03 −=N 39504.03 −=N

39504.03 −=N is qualitatively similar to the chaotic attractor at 



39503.03 −=N . These figures make clear the mechanism of an intermittency of the origin of one attractor 
from another. In a point of a bifurcation the chaotic attractor from fig. 3c disappears and in the system (1) 
arise an attractor of new type, motions of trajectories of which consist of two phases. One of them, as well as 
earlier, we name coarse grained laminar, represent chaotic wanderings of trajectories along the arisen 
attractor in neighborhoods of trajectories of the missed attractor. At unpredictable moment of time  
trajectories  "are broken" and leave to the remote areas of the phase space. It is the turbulent phase of motions 
of trajectories. Then trajectories again are returned in area of the missed attractor. This process infinite 
number of times iterates.      
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Fig.4. Projections of Poincare section of chaotic attractors at 39503.03 −=N (a) and at 39504.03 −=N (b).  

 
In fig. 4a-b Poincare sections (by a plane 5.0−=β ) of these attractors are given. Both Poincare 

sections are dot chaotic sets. One of sections (fig. 4b), as a fragment, contains a set qualitatively similar to the 
second section (fig. 4a), that confirms presence in the system of an intermittency such as "chaos - chaos". 
Transition to chaos by the scenario distinguished from classical scenarios of Pomeau - Manneville is 
observed here also.  
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